Off__Plane Bridge

Off-Plane Bridge Design and Construction Manual

Produced for Minor Archineering at Delft University of Technology

Alexander Whitwell
Artur Brodovič
Caspian Hintzen
Laura Vianen
Maïssae El Aazizi
Marie Louise Grundfør
Maryam Al Azzawi
Max Donders
Panayiotis Hadjiioannou
Petra Postelnicu
Renske Klein
Roan van Rijn
Sasha Jongen
Vincent Pikand

Design Statement
Truss 8
Walkway 16
Handrail
Foundations 24

The Off-Plane Bridge aims to offer a method of construction for a set of waste timber with varying dimensions and properties. It takes its core design principles to the smallest level of detail, and visually represents the holacratic working manner in which it was created. The bridge utilises off-plane joints; where elements are connected adjacent to each other, remaining in different planes. This minimises the amount of joinery needed, which could create unreliable connections when dealing with an unknown palette of timber.

Instead, the fasteners between the wood become the determining factor for the strength of the joint. In an effort to simplify the construction process, and experiment with new innovations in timber, this design proposes to use Lignoloc densified wooden nails to create dowel-type connections between the timber boards. This product has not been tested in this way before, and as such the OffPlane Bridge has the potential to become a world first. This design and construction manual aims to demonstrate the depth of research and testing already carried out to prove the viability of this proposal, and the design changes that have been made to improve the strength and efficiency of the structure.

Early inspiration came from the work of Fabio Gramazio and Matthias Kohler at ETH Zurich,
who's sequential roof for the new ITA building explored the possibilities of collated nails in an off-plane structure. Their incredibly dense wooden truss system drastically reduced the shear in each joint, allowing for only a few nails per layer. This was something we also discovered during our design process, and have consequently increased the number of layers per truss.

Indeed, we have followed an iterative design process, informed by 1:1 maquettes, testing, and input from a variety of experts. We spoke to Beck Fasteners, the producers of Lignoloc, to further understand the possibilities and restrictions associated with the product. Combined with our own structural analysis, this information has helped us to design a connection we believe can support 30 people, and is compliant with the Eurocode regulations.

The off-plane principle has informed our design at every stage and level of detail. At the smallest level, the individual nails are arranged in an off-plane grid to ensure they do not create straight lines along the grain. This example typifies the design attitude present in the Off-Plane Bridge, where complexity and intricacy coming from the structural design helps to create a unique visual aesthetic.

One key feature of both visual and structural design is the discretisation of different elements of the bridge. We have distinguished the truss, walkway, handrails, and foundations as the four components which form the bridge. These have been developed by autonomous groups in a holacratic manner, and the final coalition of elements reflected the horizontal organisation structure that has defined our creative process.

By dividing the bridge and working group into smaller components, we have reduced alienation in the design phase. In a more traditional structure, some individuals may be given specific tasks which appear divorced from design discourse. By compartmentalising this process, we have ensured that every member of our group is able to fully contribute to their component, as well as exploring how they come together to form the bridge. Any knowledge learned by one group has been openly shared and discussed with everyone to aid the design of every component.

The resultant bridge is a representation of the structural principles that underpin it, as well as the mindset of collective work that has created it. We hope it acts as a valuable contribution to research around design with waste timber, timber fasteners as part of an all-timber structure, and the possibilities of a more cooperative way of working.

Walkway

Statistical Model for Timber Remainders Normalization

Acting both as a walking surface and bracing for the bridge, the walkway is also a novel system, with a digitally automated design process. Based on cross laminated timber, it uses Lignoloc densified timber nails to create a rigid, twolayered surface. The computational process for the layout of the timber front-loads the labour required in the design process. Now we have established a model, any waste timber can be used.

After creating an inventory of the timber pieces, they must be normalized before applying the rectangle packing algorithm to achieve optimal results. A statistical model using the median and standard deviation, along with predefined limits for the dimensions of the pieces, is applied to effectively identify and adjust outliers. This process ensures the dimensions are within a practical and usable range, facilitating the algorithm's efficiency and material utilization.

Next, the Open Nest plugin for Grasshopper is used to arrange the pieces of timber into a rectangle with bigger dimensions than the bridge flooring, in order too increase its packing capabilities for the reduced size of the actual flooring. The pieces on the rectangle edges are then cut to the dimensions of the bridge flooring, and the small gaps that remain are filled with additional waste timber pieces.

The assembly process is
straightforward. Lamellas of waste timber - adjusted to be 30 mm thick - are laid out according to the algorithmic design discussed previously. Onto this, the second layer is added, with grain in the perpendicular direction. Finally, the Lignoloc nail gun is used to seal the layers. A bio-based coating is added to protect the product from rotting.

Bio-based coating added to preserve laminated timber panels

to deck

Step 1:

Gather all the pieces assigned to the railing. These are given below.

Rightside:		Leftside:	
R1	1.37 (split)	L1	6.10 (cut)
R2	1.20 (split)	L2	6.10 (cut)
R3	1.6 (split)	L3	6.10 (cut)
R4	1.37 (split)	L4	6.10 (cut)
R5	6.17 .2	L5	4.2
R6	6.17 .1	L6	6.25
R7	4.25	L7	6.7
R8	6.19	L8	4.7
R9	1.49	L9	2.22
R10	5.4	L10	5.5
R11	5.34	L11	2.31
R12	5.16		L13
R13			5.32

Pieces in the railing

Step 1

After gathering all the pieces for the railing, all the horizontal pieces need to be cut at an angle of 30 degrees on both the top and bottom sides of the railing, as shown in the picture (viewed from the small side of the beam, side view)

This would be done with the table saw in the model hall.

Step 2

Start with the assembly of the railing by choosing one of the two railings, left or right, and one of the ends. The prototype in this case started with the right side with pieces: R5, R6 \& R9.

Step 3
Based on the shape and size of the horizontal pieces, you would
 make cuts on the vertical pieces. 1. Start with the angled cut on the top of the vertical piece. This will be on the inside, about 100-150 mm .
2. Use a table saw or a Japanese saw to cut a general cut for the horazontal pieces. To do this; first, mark 100 mm from the top, which is the top of the first horizontal piece. Then, mark the thickness. Next, at a maximum distance of 500 mm apart, mark the top of the bottom horizontal piece and mark the thickness of that piece.
3. Then use a chisel to alter the pieces so they fit together.

* Do this fo every vertical piece and the associate horazontal pieces.

Step 4

Step 5
Now take the horizontal pieces of the railing and create a half-lap joint with the next two horizontal beams. Repeat this until you finish the whole side of the bridge by looking at the general overview, the half-lap joints, and closely paying attention to step 3 and 4

* Do this for the horizontal elements at the 1000 mm height and the 500 mm height.

Step 6

After sliding in the horizontal elements, it's time to secure them together. This is done by clamping the elements in place and drilling holes, which will later accommodate the dowels. If lignoloc is used, there's no need to drill holes; the lignolocs can be shot in at an angle, as shown in the images. The same applies to the dowel holes.

* This is done in the same way for the half lap joints. See the pictures below

The dowels that are attached to the halflap joint are either drilled in from below or shot into it. This ensures that the connection remains watertight. However, it is important that no hole remains at the
top.
For the horizontal and vertical element connection, only one connection is made, as the mechanical connection is very strong, and only a slight hold in place is needed.

Step 7

Now create the final part by drilling a hole at the top of the vertical elements of the railing and a small hole in another piece as sacrificial wood. In this way, the joint is not exposed to the rain and is protected, and the vertical elements are also protected against rot.

The foundations represent one of the most challenging components of the bridge, by virtue of the difficulty using timber in a situation where it does not dry out.

It is common in the Netherlands for buildings to have deep timber pile foundations. This is possible since the timber is burried below the water table, and consequently is in anaerobic conditions.

Equally, it it common in other countries for timber to act as foundations in the form of stilts - suspending a structure off the ground. This method relies on a solid base for the timber to rise from, and as a result is not possible in our bridge.

It has therefore been a challenge to develop an bio-based design for the foundations. We intend to have timber piles which rise out of the ground, with the portion lying beneath the ground treated with the sho sugi ban technique of wood preservation. This entails charring the exterior of the wood to prevent it reacting to the surrounding moisture.

Above this, we propose a simple joinery which slots into the layering of the truss. The diagram opposite shown the simple process for attaining this seemingly complex geometry.

For the exhibition, we have designed a structure from reclaimed wooden palettes which supports both sides of the bridge. The design is optimised to use a minimum number of palettes.

The palettes will be attached using straps, making the temporary structure non-interventional and fully reversible.

Off_Plane
 Bridge

